Parametric numerical studies on the dynamic response of unreinforced masonry structures


Chácara, C; Lourenço, Paulo B.; Pantò, B; Cannizzaro, F; Caliò, I

The prediction of the dynamic response of Unreinforced Masonry Structures (URMS) is a very complex task, since it is governed by material degradation and cyclic hysteric behaviour. Procedures based on nonlinear static analyses have been proposed for the seismic assessment of URMS, without properly considering hysteretic energy dissipation during the dynamic response. Even though dynamic nonlinear analyses provide satisfactory simulations of the seismic response, its application requires considerable computational effort and high user expertise for the accurate definition of the material properties, making it unsuitable for practical applications. However, simplified macro-element strategies, capable of simulating in-plane and outof-plane nonlinear responses, could represent a satisfactory engineering solution in the dynamic context. In this study the nonlinear static and dynamic in-plane behaviour of URMS was assessed by means of plane discrete models. The preliminary numerical investigation evidenced the need to define suitable hysteric constitutive laws for reliable nonlinear dynamic analyses of URMS.